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The finite differences method is used to numerically study the structure of 
a laminar boundary layer with a precipitating disperse impurity on a semi- 
infinite plate. 

The precipitation of a disperse impurity on the walls of a channel is generally studied 
on single particles in a given field of gas velocities (see [1,2], for example). Such an 
approach is valid only for very low concentrations of the disperse phase, since it does not 
permit consideration of the effect of the disperse particles on the dispersion medium. 
Here, we examine a laminar boundary layer with a monodisperse mixture precipitatingon a 
semiinfinite plate in the case of a zero pressure gradient. The volume fraction of the im- 
purity is much less than the volume fraction of the dispersion medium but is comparable in 
the terms of the mass fraction. In cases where the concentrations of the impurity is sub- 
stantial, it is expedient to use the theory of interpenetrating continua [3]. The system of 
equations of the boundary layer of a two-phase medium on a plate was formulated in [4-6] 
within the framework of this theory (also see the bibliography in [5,6]). However, it was 
assumed in [4-6] that only aerodynamic resistance acted-on the disperse particles. Besides 
this force, the authors of [7] considered the Magnus force due to rotation of the particles. 
The authors of [7] spoke of the "motion of moisture in the through parts of steam turbines," 
but the calculated profiles of 9p and v D did not correspond to precipitation problems. The 
Safman force was not even mentioned in [7], and the results of the calculations were present- 
ed without an indication of the dimensions or density of the disperse impurity. 

Since we are examining a laminar boundary layer or a semiinfinite plate, we choose U e 
as the velocity scale, v/U e as the length scale, and R ~ as the density scale. The gas phase 
is assumed to be incompressible, ~D ~ 10-2' It follows from this that R = (i - ~p) R ~ ~ R ~ = 
const. At ~pe/aX = 0, with allowance for R~ ~ << i, the system of equations of a boundary 
layer with rotating monodisperse particles of an impurity can be written in the following 
dimensionless form: 
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Here and below, the subscript p denotes parameters pertaining to the disperse phase, 
while the absence of subscripts denotes parameters pertaining to the dispersion medium. 
The dimensionless coordinates x and y are the corresponding Reynolds numbers. 
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It is necessary to assign boundary conditions on the wall and in the external flow for 
the system of equations. We also need to assign the profiles of the unknowns with a certain 
coordinate x 0. At y ~ ~ u = i, Up = Upe, Vp = 0, pp = Ppe, mp = 0, i.e., the flow about the 
plate is plane-parallel and contains nonrotating disperse particles. No boundary conditions 
for the precipitating disperse phase are assigned on the plate (at y = 0); the boundary con- 
ditions for the dispersion medium u w = v w = 0. 

It was shown in [6] that the phases do not interact at a distance x 0 which is much less 
than the particle stagnation length L. Here, we assigned the initial profiles with X0/L = 
0.02. For the disperse phase, these profiles do not differ from the parameters in the in- 
coming flow: Up0 = Upe, Pp0 = Ppe, Vp0 = 0, ~p0 = 0. The dynamics of the dispersion medium at 
X << L is described by the-Navier-Sto~es equations for a one-phase flow. We note that 

~e~ Xo 

Since ~ = 0.00075 and Re d ~ i0 in the present study, then x 0 > i00. Thus, the Prandtl equa- 
tions describing a one-phase laminar boundary layer are valid for the dispersion medium at 
x = x 0. As in [6], as the initial profiles of the dispersion medium we assigned the well- 
known Blausius solution. 

Apparent additional mass, buoyancy, and the Basse force can be ignored in gas suspen- 
sions. We further assume that forces of an electrostatic or thermophoretic nature are ab- 
sent and that the Froude numbers are such that gravity can be ignored. 

Let us determine the aerodynamic resistance acting on a single disperse particle: 

I 1 ~dZlV~IV r, V~=V--V.. F~ =~ car ~ 4 

The method in [8] can be used to determine the resistance coefficient of a spherical particle 
within a broad range of Reynolds numbers Rep; then, assuming that fD = uFg/(mpUe3), we obtain 

[ ~  = 7 ( u - - u v ) ,  [~ = ? ( v - - W ) ,  ? = ( l q - O  179Rey2+O,O13Rev)/Stk. 

The buoyant Magnus force is due to the rotation of the particles and is determined as 
follows [3] 

I 
FM = --6- % adSR ~ [V~ • ~p].  ( 7 )  

Considering c M = 3/4 for small Rep and small Re~, it follows from [7] that 

M~ = ~ p  (v - -  vp), fM~ = - -  ~ p  ~ - -  up). ( 8 )  

It was assumed in [7] that the angular velocity of the disperse particle is equal to the 
angular velocity of the fluid element surrounding it. However, a plus sign was used in the 
expression Up =-0.5 8u/By, i.e. an error was made in the sign of the Magnus force. 

We propose that the Safman force can be approximately determined by the same expression 
as in the case of the steady gradient flow of a viscous incompressible fluid about a single 
slowly rotating sphere [3]: 

\ o Y :  ' 

~. )z/2 
fs=4,1 Re x (..--up) \( O~OF , " (lO) 

I n  a f o r m u l a  i n  [2]  w h i c h  i s  s i m i l a r  t o  ( 9 ) ,  an  e r r o r  was a l s o  made i n  t h e  s i g n  and  t h e  
coefficient was exaggerated by a factor of 4~. Thus, according to the calculations that were 
performed, disperse particles which had penetrated the boundary layer were forced out of the 
layer by the Safman force - although it is clear from Eq. (I0) that, in the problem being 
considered, the Safman force will facilitate precipitation of the disperse phase. 

1093 



| "-§ ~ 

0 0,5" t.t -3  -Z . - I  0 u ~ 

Fig. i. Profiles of dimensionless longitudinal (a) and trans- 
verse (b) velocities of the dispersion medium (solid curves) 
and disperse phase (dashed curves) at Re d = i0: a) i) i0 -~" 
Re x = 0.01; 2) 0.055; 3) 0.22; points denote the longitudinal 
velocity of the gas in the Blasius similarity solution: 0) 
in relation to the argument N; 4) in relation to the argument 
$: b) i) i0 -s" Re x = 0.02; 2) 0.ii; 3) 0.55. Here and below, 

= 0.00075, Upe = i, Ppe = I. 

Let us compare the Safman force and a projection of the Magnus force on the transverse 
axis: 

The inequality is valid for precipitation problems not involving the rebound of particles 
from the wall at a high velocity. Using the one-phase Blausius solution 8u/By ! 0.332/V~as 
an estimate - where equality is attained only at the wall - we finally obtain 

o,oTne /V  (:l) < 

It follows from inequality (Ii) that, in precipitation problems, the Magnus force can be 

ignored when the ratio Red/~Rv~-ex is small. 

Considering that the Stokes number can be represented in the form Stk = Red2/(24X) and 
taking (8) and (i0) into account, we note that the similiarity criteria of the problem in 
question are the ratio of the true densities of the phases X and the Reynolds number, the 
latter being determined from the particle diameter and the gas velocity in the external flow 
Re d �9 

To solve the formulated problem, we used variables q =y/V~, v o = v~-v, Vp ~ = V~p and a 
difference grid which was refined near the wall in accordance with the geometric progression 
Aqm+z = Aqm/Z, where m = i, 2 ..... Mz; z = 0.85, m I = i corresponds to a node on the plate, 
M I = 26 corresponds to a node on the external boundary. 

The difference scheme we chose to use on this grid had the property of strongly stabiliz- 
ing high-frequency perturbations, similar to the scheme described in [9]. Here, artificial 
viscosity was used in the difference analogs of the equations of the disperse phase (4-6). 
The first preliminary values of the unknowns u, ~ = (u~, Vp, Up) were determined for the layer 
( n  + 1 ~ .  . �9 �9 ~ n + : / 2  We t h e n  u s e d  an e x p l x c l t  r u n n i n g - c o u n t  scheme t 2 c a l c u l a t e  t h e  v a l u e s  o f  v m 
p n+i/2 The second preliminary values of the unknowns u, ~ were determined in two stages - ~m 
fzrst, on the half-integral layer (n + 1/2) with the step Ax/2, and then with the same step 

on the layer (n + I) Finally, we determined ~+I--2-~n+I ~,+i 

The scheme we employed, with central-difference approximation of the derivative with re- 
spect to q, requires additional boundary conditions that were not included in the boundary- 
value problem in [9]. The additional conditions for the disperse phase on the plate ~I n+l 
are obtained in explicit form from the corresponding equations. The system of difference 
equations and the corresponding boundary conditions were solved by trial run. 
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Fig. 2. Change in the transverse velocity of the impurity on 
the plate (solid lines) and the integral flux of the precipi- 
tating impurity (dashed lines): i) Re d = i0; 2) 20; 3) 50. 

Fig. 3. Profiles of the distributed density of the impurity 
at Re d = i0: i) 10-S'Rex = 0.03; 2) 0.055; 3) 0.ii; 4) 0.33. 

Fig. 4. Change in the local resistance coefficient (solid 
curves) and momentum thickness (dashed curves) along the plate: 
i) Re d = i0; 2) Re d = 20. 

If we integrate Eq. (2) and the sum of Eqs. (3) and (4) - with allowance for Vpe = 0 - 
across the boundary layer, the resulting integrals can be used to check the accuracy of the 
calculations: 

u(l~-u) dy+ ppUp(1--up) dy=lo%- 8u dx @j' 9pwVp~(1--upw) dx. 
o o 5 8y o 

(12) 

The last terms characterize the mass and momentum losses of the disperse phase due to precipi- 
tation. In calculations performed by the method described above, Eqs. (12) were satisfied 
with an error of 3-4%. 
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Figure i shows results of calculations of the velocity profiles of the phases in the 
laminar boundary layer along the plate. The problem is known [6] to have a similarity solu- 
tion in the region which is an equilibrium region with respect to phase velocity (x + ~). 
The profile of longitudinal velocity, meanwhile, coincides with the Blasius profile of the 

= N(I + Ppe )I/2. It is evident from Fig. la that the profiles Of argument longitudinal 
velocity become more and less full, respectively, for the dispersion medium and the disperse 
phase as x increases. This can be attributed to the exchange of momentum between the phases 
due to aerodynamic resistance. The fullness of the velocity profile of the dispersion medium 
at x > 0.02"105 exceeds the fullness of the Blasius profile of the argument $; at x > 0.2.10 s, 
the profiles of the constituent phases continue to approach one another and become less full, 
tending toward the above-indicated Blasius profile. 

The change in the profiles of the transverse velocity of the disperse phase in the re- 
gion which is nonequilibrium with respect to phase velocity differs considerably from the 
change seen in [6] without allowance for the buoyancy forces acting on the particle. As can 
be seen from Fig. la, in the nonequilibrium region, the longitudinal velocity of the disperse 
phase is greater than the longitudinal velocity of the gas. The largest difference in longi- 
tudinal velocities is seen at the wall, and it is here that 8u/By attains its largest value. 
Thus, in accordance with Eqs. (8) and (10), both the Safman force and the projection of the 
Magnus force on the transverse axis are negative. As a result, in the wall region in Fig. Ib, 
the transverse velocity of the disperse phase is directed toward the wall. Away from the 
wall, where buoyancy is small, the transverse velocities of the disperse phase and the gas 
are both positive. At x + ~, Vp + v, i.e., Vp > 0 (as for the dispersion medium), while Vpw = 
v w = 0 on the wall. 

Figure 2 shows the change in the transverse velocity of the disperse phase on the plate. 
The modulus VDw begins to increase near the leading edge of the plate and then decreases, 
since the quantity Up - u also decreases. After having reached a minimum (at x ~ 0.125"i0s), 
at Re d = 10 the quantity Vpw becomes negligible at the distance x > 0.8.10 s. An increase in 
Re d leads to a situation whereby the modulus Vpw increases less rapidly along x but still 
reaches large values. Here, the nonequilibrium region becomes more extensive. Calculations 
performed for Re d ~ 50 showed that the flow remains essentially nonequilibrium with respect 
to phase velocities right up to the region where the transition occurs from a laminar boundary 
layer to turbulent flow. 

Figure 3 shows calculated profiles of the concentration of the disperse phase. Since 
the transverse velocity of the particle is negative in the wall region, it settles out onto 
the plate. As a result of this precipitation, the impurity concentration is lower near the 
wall than in the incoming flow; the concentration continues to decrease with increasing dis- 
tance from the leading edge of the plate as long as the value of Vpw < 0 remains substantial. 
Downflow, as Vpw + 0, the impurity concentration in the wall region begins to increase; the 
concentration profiles have their largest values at the wall. The author of [6] obtained 
such concentration profiles over the entire flow region (except for the distant equilibrium 
zone), since buoyancy was not considered. In [7], the above-noted error in the sign of the 
Magnus force and the absence of the Safman force led to a situation whereby the transverse 
velocity of the particle v~ > 0 in the wall zone, particle precipitation was absent, and 
there was no reduction in Impurity concentration near the plate due to precipitation. At 

~ 2.5, Fig. 3 shows a zone with a high impurity concentration pp > Ppe" It is evident from 
Fig. ib that, here, Vp > 0. However, since Vpe = 0, then this zone receives some of the im- 
purity present in the wall region. 

The study [4] presented graphs of the change in the thickness of a laminar two-phase 
boundary layer. The thickness of the two-phase layer was greater than the thickness of the 
one-phase layer. However, it is evident from Fig. la that the distance from the plate at 
which the longitudinal velocity of the gas differs from U e by 1% (as an example) is shorter 
in the two-phase flow. Figure 4 shows the effect of the disperse phase on the local friction 
coefficient and the momentum thickness of the laminar boundary layer. In the initial section 

cfv~-= 0.664; 8/V~-= 0.664, as in the one-phase case. In the region which is equilibrium 

with respect to phase velocities [6]: cf~+ 0.664(1 + Ppe) I/2, 8/V~ + 0.664/(1 + Ppe )I/2. 
The lower the value of Red, the more rapid the local friction coefficient and momentum thick- 
ness reach their respective limiting values. Here, the equilibrium value of the integral 

characteristic @/v~-is reached considerably earlier than that of the differential character- 

istic cfV~x. 
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The proposed method of calculation makes it possible to evaluate both the local and the 
integral rate of precipitation of a disperse impurity in a laminar boundary layer. Figure 2 
shows results of calculation of the integral G w. The integral flux increases as long as Vpw 
has large negative values. A reduction in Vpw - in addition to the reduction in Ppw down- 
flow (Fig. 3) - leads to a slowing of the increase in G w. In the equilibrium (with respect 
to phase velocity) region, G w = const, since Vpw = 0 and no precipitation occurs. With an 
increase in Red, precipitation intensifies due to the large values of Vpw. 

NOTATION 

x = XUe/~ ~ Rex; y = YUe/~ ~ Rey; X, Y, longitudinal and transverse coordinates; q = 

y/~xx; ~, kinematic viscosity of the gas; u = U/Ue, v = V/Ue, dimensionless longitudinal and 
transverse components of velocity; PD = Rp/R~ Rp, R, distributed densities of the impurity 
and dispersion medium; I = 0.75R~ o o R , Rp, true densities of the phases; ~, ~p, volume 

fractions Of the phases; f = Fv/(~pUe3); F, phase interaction force; mD, mass of a disperse 
particle; L = Ued2/(241v), particle stagnation length; Wp = ~p~/Ue 2, dimensionless angular 
velocity of a particle; cf, local resistance coefficient of the plate; p = P/(R~ dimen- 
sionless pressure; Stk = Rp~176 Stokes number; Rep = Vrd/~, Re d = Ued/~ , Rem = 
~pd2/v, Reynolds numbers; d, diameter of disperse particle; 8 s Re8, dimensionless momentum 
thickness; Gw, integral flux of impurity precipitating on the plate. Indices: p, disperse 
impurity, w, plate, e, external flow; 0, initial section. 
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